A.\[\pi r\]
B.
C.
D.
C
Phương pháp giải:
Cho mặt cầu (S) có tâm I và bán kính R
Khi đó, mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính \[r = \sqrt {{R^2} - {d^2}\left( {I;{\mkern 1mu} \left( P \right)} \right)} .\]
Chu vi của đường tròn bán kính r là:
Giải chi tiết:
![(TH): Cho mặt cầu mặt phẳng cách tâm O một khoảng bằng cắt mặt cầu \[\left( S \right)\] theo giao tuyến là một đường tròn. Hãy tính theo r chu vi của đường tròn là giao tuyến của mặt phẳng v (ảnh 12)](https://video.vietjack.com/upload2/images/1648615644/1648615749-image161.png)
Theo đề bài ta có:
Khi đó bán kính đường tròn giao tuyến của mặt phẳng (P) và mặt cầu (S) là:
⇒ Chu vi đường tròn giao tuyến của mặt phẳng (P) và mặt cầu (S) là:
Đáp án C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247