A. Hàm số nghịch biến trên khoảng \(( - \infty ;1) \cup (1; + \infty )\).
B. Đồ thị hàm số có tiệm cận đứng là x = 1.
C. Đồ thị hàm số có tiệm cận ngang là y = - 1.
D. Hàm số không có cực trị.
A
\(y = \dfrac{{x + 3}}{{1 - x}}\)
TXĐ: \(\)\(D = \mathbb{R}\backslash \left\{ 1 \right\}\)
\(y' = \frac{{3.1 - 1.\left( { - 1} \right)}}{{{{\left( {1 - x} \right)}^2}}} = \frac{4}{{{{\left( {1 - x} \right)}^2}}} > 0,\) \(\forall x \ne 1\)
Vậy hàm số đồng biến trên \(\left( { - \infty ,1} \right)\) và \(\left( {1, + \infty } \right)\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247